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Effective Action for a Statistical System with a Field
Dependent Wave Function
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We compute the first order correction in h to the field dependent wave function in
Statistical Field Theory. These corrections are evaluated by several usual methods. We
limit ourselves to a one dimensional model in order to avoid the usual difficulties with
the UV divergences that are not relevant for our purposes. The main result of the paper
is that the various methods yield different corrections to the wave function. Moreover,
we give arguments to show that the perturbative integration of the exact renormalization
group provides the right result.
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1. INTRODUCTION

Recently the first order quantum correction in h (one-loop) to the classical
action of a quantum particle in one dimension, has been computed by Cametti
et al. (1999). These corrections evaluated to the second order in the derivative
expansion of the effective action, using the Iliopoulos et al. (1975) expansion,
lead to a renormalization of both the potential and the kinetic energy. Borelli and
Kleinert (2000) have extended this calculation to a theory with a field dependent
wave function. Instead of using the expansion of Iliopoulos et al. (1975), they
used a method of Frazer (1985) which can be generalized to terms of higher order
in derivatives. Note that usually a quantum mechanical system can be considered
as a statistical system in one dimension. However, this identification is no more
correct for an Hamiltonian with a position dependent mass term. Actually, in
quantum mechanics one has to ask for an additional reparametrization invariance
(Kleinert and Chervyakov, 2002). In this paper we will consider our system as a
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one-dimensional model in statistical physics. To extrapolate our results in quan-
tum mechanics, adding the one loop contribution due to the reparametrization
invariance would be necessary.

In this paper we aim to compare several approaches for the computation
of the one-loop wave function renormalization. In order to do so, it is instruc-
tive enough to consider a 1D theory in order to avoid the usual UV compli-
cations. In particular, we first compute the one loop-renormalization of the
kinetic energy with a field dependent wave functions by using a more gen-
eral expansion than the Frazer’s one. This method introduced by Zuk (1985a,b)
does not need an expansion about a constant field and leads to different cor-
rections from the ones obtained in Borelli and Kleinert (2000). Our result is
a different expression for the effective wave function than the Borelli-Kleinert
one.

Two other methods based on the perturbative integration of the “exact” RG
equation are also considered. The first one is a RG flow obtained by the mean of a
regulator—similar to a smooth cutoff—in the Schwinger Proper Time formalism
(Mazzar and Zappala, 2001). Surprisingly it leads to the same result as the one
obtained with the method of Zuk. However the weakness of this RG equation is
the lack of first principle in its derivation.

The second RG approach is based on another exact equation (ERG) de-
rived in (Gosselin and Mohrbach, 2000; Gosselin and Mohrbach, 2001; Gosselin
et al., 2001. It’s advantage in comparison to the preceding approach relies
on an exact Fourier modes after modes integration in the path integral. This
integration is performed without any device like a smooth cutoff. The ERG
equation thus obtained as well as the resulting expression for the wave func-
tion renormalization are different from the other ones. We provide an expla-
nation for this fact : the perturbative expansion and the smooth cutoff RG
method rely on an integration over the all Fourier space, including paths far
from the classical one, leading to additional wrong contributions. As a conse-
quence the ERG equation seems to provide the correct one loop wave function
renormalization.

2. EFFECTIVE ACTION

The effective action formalism in statistical physics is explained in Cametti
et al. (1999). Here we follow the approach of paper of Borelli and Kleinert
(2000).

The starting point is the action in one dimension with a field dependent wave
function:

A [ϕ] =
∫ tb

ta

(
Z (ϕ)

2
ϕ̇2 − V (ϕ)

)
dt (1)



Effective Action for a Statistical System with a Field Dependent Wave Function 321

The partition function (Kleinert, 1999) reads in the semi-classical approximation
(Borelli and Kleinert, 2000):

ZQM (tb,ta) [ϕcl] = e
i
h
A[ϕcl ]

∫
ϕa=ϕb

Dϕe
i

2h

∫ tb
ta

dtϕ(t)K(t)ϕ(t)
(2)

where ϕ (t) = ϕ (t) − ϕcl (t) are the fluctuations around the classical path solution
of the classical equation of motion, and K (t) = δ2A

δϕ(t)δϕ(t) |ϕcl . The semi-classical
effective action is defined as:

Aeff [ϕcl] = −ih ln ZQM [ϕcl]

which after the gaussian integration in (2) reads:

Aeff [ϕcl] = A [ϕcl] − ih

2
Tr ln K (t) (3)

with:

K (t) = Z (ϕcl) ω̂2 − V ′′ (ϕcl) − iZ′ (ϕcl) ϕ̇clω̂ + 1

2
Z′′ (ϕcl) ϕ̇2

cl − d

dt
(Z′(ϕcl)ϕ̇cl)

In Borelli and Kleinert (2000) the one-loop correction was computed by setting
ϕcl (t) equal to ϕ0 + ϕ̃ (t), where ϕ0 is constant and expanding the logarithmic
term in (3) in powers of ϕ̃ (t) and its derivatives.

The method of Zuk (1985a,b) we use here, is based on a different kind of
expansion in which it is not necessary to expand the classical path ϕcl (t) around
a constant path. The expansion is obtained by defining K (u) = K (t) + u, where
u is a (mass)2 parameter, then by deriving with respect to this parameter and
expanding the logarithmic term in (3). In fact by defining � (0) = i h

2 Tr ln K (t)
we have the following relation:

� (0) = −
∫ ∞

0
du

d

du
� (u) = −1

2

∫ ∞

0
duTrK−1 (u) (4)

Now we follow Zuk (1985a,b) by writing the expansion:

K−1 (u) = A−1 − A−1BA−1 + A−1BA−1BA−1 + · · ·

where A = Z(ϕcl)w2 − V ′′ (ϕcl) − u and B contains all the other contributions
of the operator K(t). Note that we have introduced the eigenvalue w2 of the
energy operator ŵ whose coordinate time representation is −id/dt . Following
the same steps as in Zuk (1985a,b) we collect in (4) all the contributions to the
coefficient of ϕ̇2

cl in order to get the effective wave function. A lengthy computation
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leads to:

Zeff (ϕcl) = Z (ϕcl) + h

32

[V ′′′(ϕcl)]2 [Z (ϕcl)]1/2

[V ′′ (ϕcl)]5/2
− 3h

16

V ′′′ (ϕcl) Z′ (ϕcl)

[Z (ϕcl)]1/2 [V ′′ (ϕcl)]3/2

− 7h

32

[
Z′ (ϕcl)

]2

[Z (ϕcl)]3/2 [V ′′ (ϕcl)]1/2 + h

4

Z′′ (ϕcl)

[Z (ϕcl)]1/2 [V ′′ (ϕcl)]1/2 (5)

The important and intriguing result is that the various terms in the one-
loop expression of Zeff (ϕcl) have the same form as those obtained in Borelli
and Kleinert (2000), but the numerical coefficients are different. For a field-
independent wave function we recover the same result found in Borelli and Kleinert
(2000) and in Cametti et al. (1999).

3. ONE LOOP COMPUTATION FROM SCHWINGER
PROPER TIME FORMALISM

It is well known that the effective action can be computed nonperturbatively
through the Renormalization Group (RG) method. Recently a particular version
of the RG flow obtained by means of regulator in the Schwinger Proper Time
(PT) formalism has been introduced (Mazzar and Zappala, 2001) . This method
was used to compute the energy gap between the first excited state and the ground
state energy of a one quantum particle system. This work was an alternative
to previous computation we performed by means of the exact RG for various
quantum systems (Gosselin and Mohrbach, 2000; Gosselin and Mohrbach, 2001;
Gosselin et al., 2001).

The flow equation for the running Zk in the PTRG formalism is given in
Mazzar and Zappala (2001):

k
∂Zk

∂k
=

(
k2

4π

) 1
2

e−V ′′/Zkk
2

×
(

− Z′′
k

Zkk2
+ 21(Z′

k)2

24Z2
kk

2
+ 9Z′

kV
′′′

6(Zkk2)2
− Zk(V ′′′)2

6(Zkk2)3

)
(6)

To compute the one-loop effective wave function we integrate the previous equa-
tion from 0 to ∞ keeping the kinetic energy and the potential to their bare values.
We directly obtain for the effective wave function:

Zeff (ϕcl) = Z (ϕcl) + h

32

[V ′′′ (ϕcl)]2 [Z (ϕcl)]1/2

[V ′′ (ϕcl)]5/2
− 3h

16

V ′′′ (ϕcl) Z′ (ϕcl)

[Z (ϕcl)]1/2 [V ′′ (ϕcl)]3/2

− 7h

32

[Z′ (ϕcl)]2

[Z (ϕcl)]3/2 [V ′′ (ϕcl)]1/2 + h

4

Z′′ (ϕcl)

[Z (ϕcl)]1/2 [V ′′ (ϕcl)]1/2 (7)
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which is the same result, obtained by the one-loop computation by means of the
method of Zuk.

4. ONE LOOP COMPUTATION FROM EXACT
RENORMALIZATION GROUP

It is interesting to compare the preceding result with an exact RG equation
approach we derived previously (Gosselin and Mohrbach, 2000; Gosselin and
Mohrbach, 2001; Gosselin et al., 2001). Working in discrete time allowed us to
compute the RG flow one mode after the other in the path integral. The main
point is that the RG equation for the effective action is an exact (nonperturbative)
equation obtained without any approximation. Note that this is possible only in one
dimension since in higher dimension the computation is plagued by non-analytical
terms as explained in (Gosselin and Mohrbach, 2000; Gosselin and Mohrbach,
2001; Gosselin et al., 2001) as below. Note that contrary to our equation, the PTRG
equation (Mazzar and Zappala, 2001) does not have a first principle derivation.

The running wave function equation is (Gosselin and Mohrbach, 2000;
Gosselin and Mohrbach, 2001; Gosselin et al., 2001):

Zn−1(ϕ0) = Zn(ϕ0) + 1

2β

(
1 + Z′′

n(ϕ0)

Zω2
n + V ′′

)
(8)

where n denotes the nth discrete mode and ωn is the corresponding Fourier mode.
Remember that β = (N+1)ε

h
is the inverse temperature (Kleinert, 1999) and ε is

the time interval (lattice spacing). In the zero temperature limit Nε → ∞, and the
continuum limit ε → 0 Eq. (8) becomes:

∂Zk(ϕ0)

∂k
= h

2π

Z′′
k (ϕ0)

Zk(ϕ0)k2 + V ′′
k (ϕ0)

(9)

where k is the energy cut-off. By solving this equation at the one-loop level we
are led to:

Zeff (ϕ0) = Z (ϕ0) + h

4

Z′′ (ϕ0)

[Z (ϕ0)]1/2 [V ′′ (ϕ0)]1/2

This expression is in contradiction with those obtained by Kleinert and with the
method of Zuk. The only common contribution is the last term in (5). Note that as
a consequence of (9) there is no renormalization effect for a constant bare wave
function: Zeff (ϕ0) = Z (ϕ0). This result agrees with some numerical computations
done in Jirari et al. (2002).

The absence of the other terms in (9) has been already explained in (Gosselin
and Mohrbach, 2000; Gosselin and Mohrbach, 2001; Gosselin et al., 2001) and
is related to the presence of the so-called non analytical terms when the Fourier
modes are continuous. In field theory these terms appear when the integration on
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the fast modes is performed on a continuous spherical shell of thickness 	k. It
is precisely these terms which give the additional contribution to the flow of the
kinetic energy if we forget the non-analytical terms.

To precise our argument let us consider the derivation of the RG flow for the
wave function by integrating the Fourier modes in a continuous shell of thickness
	k. For the point we want to show it is enough to consider a space independent
wave function. We arrive at the following equation (Gosselin and Mohrbach, 2000;
Gosselin and Mohrbach, 2001; Gosselin et al., 2001):

Zk−	kq
2 + U

(2)
k−	k(ϕ0) = Zkq

2 + U
(2)
k (ϕ0) + U

(4)
k (ϕ0)

∫
k−	k

k

dp

2π

1

G(p)
+ F (q)

where

F (q) =
(
U

(3)
k (ϕ0)

)2

4

∫
k−	k

k

dp

2π

∫
k−	k

k

dp′

2π

δ(p + p′ + q) + δ(p + p′ − q)

G(p)G(p′)
+ H.c.

(10)
It is clear that for q < 	k, this integral gives a contribution of the form 	k − |q|
because the domain of integration is deformed by the Dirac delta constraints.
By expanding the denominator in powers of q, we obtain the non-analytical
contribution.:

F (q) =
(
U

(3)
k (ϕ0)

)2

4

	k − |q|
G2(k)

(1 + O(q2)) for q < 	k

and

F (q) = 0 for q ≥ 	k

Retrieving the first order quantum correction to the classical equation derived
firstly by Jona-Lasinio’s group, as well as Borelli-Kleinert result, corresponds to
neglect the |q| contribution and let

F (q) =
(
U

(3)
k (ϕ0)

)2

4

	k

G2(k)

However, it is obvious that a rigorous computation of the discrete version of
Eq. (10) leads to the result F (q) = 0, yielding formula (9) in the limit 	k → 0.

The cancellation of the F (q) contribution shows an important difference
between the Renormalization Group and the perturbative expansion. In the last one,
the semi classical contributions are obtained by integrating over all Fourier space,
after Taylor expanding the action around a classical path. This is problematic, since
it corresponds to integrate over all paths including those far from the classical path.
On the contrary, the Renormalization Group approach, by introducing integration
on deformed shells of possible zero measure (see Gosselin and Mohrbach, 2000;
Gosselin and Mohrbach, 2001; Gosselin et al., 2001), leads to the cancellation of
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some terms that are relevant in the perturbative or semi classical approach, like
the term F (q). This cancellation is simply reminiscent of the difference between
integrating a two variables function over a square [0,
]2 (as in (10), where the two
variables are p and p

′
) and the integration over smalls intervals [k, k + 	k]2, k ∈

[0,
] and then summing over the squares. In the first case the integral is performed
over a bigger space. Note that this problem only arises for the renormalization
of the wave function and is absent for the computation of the corrections to the
potential energy. Actually in this last case, the perturbative expansion is based on
an integration over [0,
] whereas the perturbative integration of the RG equation
introduces a sum of integration over the one dimensional intervals [k, k + 	k], k ∈
[0,
]. The two procedures are obviously equivalent in that case.

In that context we can now explain why the perturbative integration of the
PTRG equation leads to the same result as the perturbative method (in particular
the result of Zuk). Indeed, in the derivation of the PTRG equation one has to
replace the double integration of the Dirac delta in (10) by only one integral with
a smooth cutoff. This unique integral is performed over all the modes, like in the
perturbation computation, and this leads to a non-zero contribution of F (q). The
smooth cutoff device, while avoiding the problem of the non-analytical terms,
relies on integration over a too large Fourier space leading to take into account
wrong additional terms.

The difference between the usual semi classical approximation and the Renor-
malization Group makes us believe that the correct one-loop result is retrieved after
integrating the Exact Renormalization Group differential equation. As a conse-
quence, the perturbative integration of the RG equation we have proposed (9)
seems to be the correct one-loop wave function renormalization, but contradicts
the traditional perturbative methods.

5. CONCLUSION

We have computed the one-loop quantum correction of the kinetic energy
for a field dependent wave function in one dimension in order to compare various
methods. The main result of the paper is that the perturbative integration of the
ERG equation leads to the exact one-loop wave function renormalization. This
result contradicts the traditional perturbative methods.
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